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I. INTRODUCTION

Predicting the moment exerted by a liquid payload in a spinning and
coning projectile is a problem of considerable interest to the Army.
Stewartson' considered the linear problem of calculating the payload moment
through the use of separation of variables and eigenvalue expansions for-an
inviscid liquid in a cylindrical cavity. First order viscous boundary layer
corrections to the Stewartson theory were carried out by Wedemeyer 2 ard
Murphy. 3  A method for calculating the linear liquid moment using the full
viscous equations with boundary layer corrections confined only to the endcaps
was also presented by Gerber and Sedney. 4  They have recently extended this
theory to eliminate the boundary layer correction at the endcaps.

5

Liquid payloads contained in a highly permeable material have also been
of interest to the Army for some time. Laboratory tests and flight tests have
shown that a highly permeable medium can significantly reduce the spin-up time
of a liquid payload.6  Flight stability for liquid saturated permeable
payloads has also been examined by D'Amico.-

This report extends the Stewartson problem by considering a cylindrical
cavity filled with a permeable medium that is impregnated with an inviscid
liquid. A further modification is introduced by segmenting the cavity, along
the symmetry axis, into a sequence of equal length cylinders. Each of these
cylinders is separated by impermeable endcaps. The porous media is modeled by
a drag term, which is proportional to the velocity field, added to the linear-
ized Euler equations. This analysis examines the induced liquid moment as a
function of parameters found by Stewartson plus parameters describing the
porous media and the number of segments in the cylindrical cavity.

The nomenclature in this report is the same as that used by Murphy. 3 In
particular, this means that the liquid moment can be represented as the
complex quantity:

Transverse Moment = mLa 22 T [CLSM + i CLIM ] Kc e (1.1)

where

mL is the mass of liquid in a fully-filled cavity,

a is the maximum radius of the container,

is the inertial spin rate of the container along the
symmetry axes,

T is the ratio of coning rate to spin ;c/;,

CLSM is the liquid side moment coefficient,

,: CLIM is the liquid in-plane moment coefficient,

Kc is sin ac is the precession angle.

*8

S *w S



II. LIQUID MOMENT

Two coordinate systems, each with X-axis along the projectile symmetry

axis, are used: the missile-fixed (X, Y, Z) system and the non-rolling XYZ

system with the Z-axis initially pointing downward. Introduce an earth-fixed

axes (Xe, Ye' Ze) with Xe-axis in the direction of the velocity vector and Ze

downward. Let a unit vector in the direction of the X-axis have earth-fixed

components (nXE, nYE, nZE). The angle of attack a in the (X, Y, Z) system is

the projection on the XZ-plane of the angle between the X-axis and the velo-

city vector. The angle of sideslip 0 is the projection of the same angle onto

the XY-plane.

The kinematic behavior of the spinning projectile is the sum of two
coning motions:

3

a + i K e + K2 e (2.1)

where
In (Kj/Kj 0 ) = j j4

j j0 + j

($ > 0) is the spin rate and Kjn, 0jO are constants.

III. EQUATIONS OF LIQUID MOTION IN POROUS MEDIA

The following analysis models the steady state response of a liquid
flowing in a porous medium confined to a cylindrical cavity contained in a
spinning and coning projectile. The objective of this theory is to predict
the liquid moment resulting from coning or spiral motion which is specified
by: 3

= , es  (3.1)

where

i~jo
K = K e , j = or 2

S = (e. + i)Tj

2
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II

The conservation equations governing the motion of the confined liquid
are the continuity equation and a modified Euler-momentum equation. The
modification is one that is commonly used to describe the flow of liquid
through a porous medium. This consists of an additional term given by:

+ + VR
Dr 7 (VR)= -PLa;2C r( (3.2)

a¢

where

u is the dynamic viscosity

K is the porosity (dimensions of length 2)

VR is the velocity of liquid relative to the porous medium

PL is liquid density
+

Dr is a pressure gradient induced by resistance of the

porous media to fluid flow.8 Cr = P is a
PLK9

dimensionless coefficient which is a measure of this
pressure gradient.

Physical reasons for using such equations can be found from the arguments used
in establishing Darcy's Law.

9

Let (r,e,x) be cylindrical polar coordinates fixed to the earth frame and
(V,W,U) be the corresponding components of velocity. For small angles, the
position vector of any point in the projectile has components

3

r : r - Kj x cos (j - 8) (3.3)

x = x + K. r cos (oj - 8) (3.4)

8 6+0 (K?) (3.5)

where tilda (~) quantities are measured in the non-rolling system. Equations
(3.3 - 3.5) lead to the velocity components

Vx = R -(s i)rK es  " i81  (3.6)

Vr = -R{$(s - i)xK es ¢ - i8} (3.7)

3



S -

V0 = ;r + R{i$(s - i)xK es  - i0} (3.8)

where

R{O = [ {1 + { ]/2= Real part of {}

Let the velocity, V , and pressure, p, fields have the form:

+ + -. +

V q + 0 e xr

P p pL 2 r2 (3.9)

where er, e, ex+are the unit vectors in the (r,e,x) directions. The

variables q = (v,w,u), and p are small perturbations of O(Kj).

Non-dimensionalizing all lengths by the cylinder radius a and velocities
by a, plus assuming periodic disturbances of the form

(v,w,u,p) = (v (r,x), w (r,x), p (r,x)) es 'ie  (3.10)

allows the continuity and momentum equations to be written as

av v iw a
-+ 1, + r u= (3.11)
ar r r ax

(s - i) q + 2 e x q = -Vp - Cr[ 4 + (s - i)(x,-ix,-r). 3.12)

The components of Eq. (3.12) take the form

yv - 2w + -p = - (s-i) x Cr  (3.13)
ar

Yw + 2v - -L = i (s-i) x Cr  (3.14)
r

Yu + -= (s-i) r Cr (3.15)
ax

4



where 0 < r < h + f < x < h - f f = fineness ratio

'y1 S-i + Cr

and h is the center of mass location along the symmetry axis. The non-
homogeneous terms of Equations (3.13 - 3.15) suggest using the transformations

VH-(s-i) x Cr (.6
, v H  r- (3.16)

+ 2i)

i(s-i) x Cr(.7

W W wH + r (3.17/)
(y+ 2i)

(s-i) r Cr (.8

u = H + (3.18)
'4. Y

in the equations of motion which reduces them to a single equation for the

pressure p

2 P + 1 p p (y2+4) 2p (3.19)

Dr2  r 3r r2  Y 2 ax2

Similarly, the solution p is related to the following physical quantities of
interest:

VH 1 ip - -__p (3.20)
y2 + 4 r ar

WH 1 [= 21pp+ 2 -- ] (3.21)
Sy2 +4 r ar

UH_ I p (3.22)
Y ax

The cylindrical cavity is assumed to consist of N chambers with circular
cross section and height A = 2f/N, each separated by impenetrable endcaps as
depicted in Figure 1.

5
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The boundary conditions for Eq. (3.19) are the normal velocity of the
fluid at the boundary must equal the normal velocity of the wall and all flow
variables remain finite. This means:

_P 0  at x =h - f + n (-L) (3.23)

ax N
n = 0,,...N

2ip - y ap . 2xs (s-i) (s-3i+Cr) at r = 1 (3.24)
ar

p = 0 at r = 0 (3.25)

where p = p + xr (s-i) 2. (3.26)

This boundary value problem is similar to the problem considered by
Stewartson i and can be shown to have the solution

p = - xr (s-i) 2 + xs (s-i) [2(h-f) + (2n+1) A] r +

16fs (S-)(y-2i) dl(Xkr) cos " k (x-h+f-nA) (3.27)

Tr k=odd k2 [(2i+y) Jl(Xk) - ' k J ( k)]

where - (y 2+4) N2 k2 72

=2 2 N = 1,2,3,...

n =

and the Jn are the Bessel functions of the first kind. If Y is pure

imaginary, the transcendental denominator in Eq. (3.27) will have zeroes.

This resonant condition occurs whenever T + Cr =0 and T is one of the
inviscid Stewartson

i eigenfrequencies.

The IV. LIQUID MOMENT EQUATIONS

The moment induced by the liquid contained in the segmented cavity is
. calculated from the time derivative of the angular momentum field. Non-

dimensionalizing this moment with 2ra3 f PL allows the moment in the YX plane

to be expressed as a single complex quantity3

6



M + i Mz  CLM K es  (4.1)

where CLM = CLSM (T,CCr,f) + i CLI M ( ,9C rsf).

The unit vectors for the earth-fixed cylindrical coordinates, (er, ee, ex),

can be written in the same complex notations in terms of ez, ex)

er = ey cos 6 + ez sin 0 <=> e (4.2)

e= - ey sin 6 + e z cos 0 <=> ielO. (4.3)

Sabstituting these into the moment integral and using the Reynolds Transport
Theorem1 ° gives the following expression for the liquid moment coefficient:'I1

N1- h-f+(n+1)tA

TCLM . E. er) x [(s - i)q + 2e* X X] (4.4)
2f n= h-f+nL J 0 - i[ 2 - 2 2 ]} r dr dx.

Using Eqs. (3.16-3.18 and 3.20-3.22) with the aid of Eq. (3.27) permits
writing the last equation as

[C r (s-i)] [(s 2+1) (3h 2+f 2 )]C r 3[1+C r (s-i)](s-i) 2 C
T CLM = - (++2ir

12 L(Y+2i) Y

12h2 
- f ~+2is (52+1) (3h2+f2) -1 2ssif 2  (4.-

128 i (s-i) (y-2i)s 2 f 2  
i l(Xk)

(y+2i) N4 1t k=odd kE(y+2i) 1 - YXk Jo(Xk) ]

N = 1,2,3,...

Murphy 3 derived the frozen liquid values of CLSM and CLIM and these are given

by

7



CLSM L - + 4(3h2 + f2)J (4.6)
_S 2 3. 2 1

CLI+ + " [3 + 12h 2 + 4f2] . (4.7)
LIM 2  12

For very slow motion (T + 0) the liquid moment should approach these values.

Equation (4.5) shows that the limiting value of CLIM as 0 equals (e +

i)/2. This agrees with the forzen liquid results when T = 0. When Cr + - the

liquid should act like a frozen liquid for all values of T. It is easy to see
that the liquid moment coefficients given by Equation (4.9) approach (in the
limit of Cr for Xk not a resonance value) the values for a frozen liquid.

The same limits, Equations (4.6 - 4.7), are also found when Cr and T are
arbitrary hut N becomes infinitely large.

V. SOLUTION METHOD

The equations of sections III and IV need to be solved over a wide range
of T for specific values of D f, and N. This requires calculating the ratio

Jo(Xk)/Jl(Xk) of the zero and first order Bessel functions. For values of k

such -hat lAk < 50, the above ratio is obtained by simply dividing the values

found from power series expansions of each Bessel function. For larger values
of 'Xk1, an asymptotic expansion of the Bessel function ratio was used. 1

Equation (4.5) is then used to find values of CLSM and CLIM. Experience has

shown that k < 20 is sufficient to produce converged solutions. All
computations wegre carried out on a VAX-8600 computer.

VI. DISCUSSION
I

Figures 2 and 3 present plots of CLSM and CLIM as functions of frequency

for f = 1.5, Cr = 3.0, N = 1, and e = 0 and 0.02. For zero damping, the

maximum side moment is slightly larger than the maximum side moment for a v
small amount of undamping given by e = 0.02. The in-plane moment remains
relatively unchanged due to the presence of the same undamping. This indi-
cates that CLM is insensitive to c for c near zero.

It was mentioned earlier that CLSM and CLIM approach the limiting values

for a frozen liquid, Eqs. (4.6-4.7), as Cr 0 ). An example of this for f = 2,
N = I and e = 0 is exhibited in Figures 4 and 5. Similar results are shown in
Figures 6 and 7 for an increasing number of chambers N and a fixed Cr 3.

% %



Generally, it has been found that the frozen liquid limit is approached quite
rapidly with increasing values of N for typical values of Cr.

If T0 is a Stewartson eigenfrequency for the particular values f0 9 kos

and NO,3 then a resonant condition will occur at T = T whenever

f fo
- ko k =1,3,5,...

k N ko NO  ~~'' (6.1)

N0, N = 1,2,3,...

For an example of this phenomenon, consider the case of ko = 1, fo = 2, No

1, Cr = 3, and e = 0. These parameter values make the ratio of Equation (6.1)

equal to 2 and the first eigenfrequency To = 0.5102. Figure 8 shows CLSM as a

function of T for k = 1, f = 10, and N = 1,5,10. The increase in CLSM for N =

5 is due to the eigenfrequency to = 0.5102 since the ratio in Eq. (6.1) is

again equal to 2. Hence for a fixed -, an increase in N can cause CLSM to

increase. The eigenvalues for the N = 1,10 cases lie outside the range of r

given in Figure 8. C therefore decreases monotonically to the frozen

liquid value, which is zero for c = 0, when N becomes sufficiently large.

The 155mm M825 projectile is shown in Figure 9. This projectile carries
a canister that is loaded with white phosphorous (WP) impregnated felt wedges.
Four angular ribs produce longitudinal quadrants within which felt wedges (116
per canister) are loaded. Aluminum foil spacers are located between each
wedge (as shown in Figure 9) and could produce a compartmentalizatior or
segmentation as modeled in this theory. When the WP is liquid (temperatures
above 44 deg C), flight instabilities have been recorded. Recent flight tests
have shown that the flight stability of the projectile can be improved by
usi,,g felt wedges with outer diameters that produce interference fits when
loaded into the canister.1 2  The model given in this report is directed at a
fundamental understanding of the payloads used in the M825. The inclusion of
a drag force on the liquid caused by the permeable media provides a first step
in understanding the physics of these payloads.

Scheidegger" tabulated permeabilities of various substances and stated a
range for hair felt as 8.3 x 10- 6 cm2 < K 1.2 x 10-5 cm2. For an MB25-type
payload, nominal values for spin rate and kinematic viscosity are 100 Hz and
0.015 cm2/sec. Hence, a median drag coefficient, Cr, is 2v/15 or approximate-

ly 1/2. Experiments should be conducted to determine the permeability, K, for
the type of felt and packing used in the M825 projectile. Investigations must
be conducted to verify if a linear, homogeneous formulation, using Darcy's
Law, is appropriate for spinning liquids. The present analysis extends prior
theories for liquid payloads and produces a simple model from which a clear
physical understanding is obtained. Additions to the present effort could
include the effects of fluid interaction with solid boundaries, radial
variations in Cr and the nonisotropic character of Cr.

9
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VII. CONCLUSIONS

The liquid moment coefficients are computed for cylindrical cavities
which are fully-filled with a permeahle medium and impregnated with an invis-
cid liquid. These coefficients reflect the results of segmenting a given
cavity into N chambers with uniform height. The coefficients are then calcu-
lated as functions of coning frequency, fineness ratio, and the parameter Cr

used to represent the physics of a liquid flowing through the permeable
medi urn.

If the range of coning frequencies does not contain any eigenfrequencies,
then the calculations plus theory indicate that the side moment approaches the
value for a frozen liquid as Cr + 0 and/or N becomes large. However, a signi-

ficant increase in the side moment can occur for a particular N by choosing
the fineness ratio such that an eigenfrequency moves into the frequency range
of interest.
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LIST OF SYMBOLS

a Maximum radial distance of the liquid-filled container (for a
cylinder, the radius, for a spheroid, the radial semi-axis)

CLIM Imaginary part of CLM.; coefficient representing the liquid

moment that causes rotation in the plane of exp i j), j = 1,2

CLSM. Real part of CLM.; coefficient representing the liquid moment

that causes rotation out of the plane of exp (i.j), j = 1,2

Cr Drag coefficient

Dr  Drag term due porous media

ex,er,e 9  Unit vectors along the earth-fixed cylindrical axes

4. +4.
exeye z Unit vectors along the earth-fixed Cartesian axes

f Fineness ratio, c/a, for a cylinder

h Distance of center of gravity along symmetry axis from
geometric center

k Axial wave numher

= i~jo
K Kjo e (j = 1,2)

j T.j

Kj K joe (j = 1,2)

'jo Value of Kj at t = 0

mL Mass of the liquid in the container 2I1a 2cpL Fir a cylinder;
4na2cPL/3 for a spheroid)

MLY + MLZ Transverse liquid moment in the aeroballistic nonrolling system

N Number of products in the X factor, Eq. (3.19)

nXEInYE,nZE Earth-fixed components of a unit vector along the x-axis

p Non-dimensional pressure perturbation as a function of r and x

r Radial coordinate in the earth-fixed cylindrical (x,r,e) system

R{} Real part of 0
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S E + i)T j = 1 or 2

u,v,w Non-dimensional velocity perturbation components in the earth-
fixed cylindrical (x,r,o) system

V Non-dimensional liquid velocity perturbation, Eq. (A.3)

VxV r IV Components of V in the earth-fixed cylindrical (x,r,O) system

x Axial coordinate in the earth-fixed cylindrical (x,r,e) system

XYZ Missile-fixed axes, the X-axis along the projectile's axis
of symmetry

XYZ Aeroballistic non-rolling axes, the Z-axis initially downward

Xe Ye Z e Earth-fixed axes, the Xe-axis along the velocity vector,
Ze downward

(K./Kj)/$j, non-dimensionalized damping; i = 1,2

Azimuthal coordinate in the earth-fixed cylindrical

(x,r,)) system

v Kinematic viscosity of the liquid

-eso

Ke

kk Defined in Eq. (3.27)

Liquid density
aPL

T'j/, non-dimensionalized frequency; j = 1,2

Spin rate with respect to inertial axis, assumed positive
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